Galatia Channel:Similar Channels Affecting Other Coal Seams: Difference between revisions

Jump to navigation Jump to search
No edit summary
(5 intermediate revisions by the same user not shown)
Line 5: Line 5:
<li style="display: inline-block;">[[File:C605-Figure-39.jpg|500px|{{File:C605-Figure-39.jpg}}|thumb]]</li>
<li style="display: inline-block;">[[File:C605-Figure-39.jpg|500px|{{File:C605-Figure-39.jpg}}|thumb]]</li>
==Colchester Coal and Francis Creek Shale==
[[Galatia Channel:Colchester Coal and Francis Creek Shale|Colchester Coal and Francis Creek Shale]]
| '''[[Galatia Channel:Colchester Coal and Francis Creek Shale|Colchester Coal and Francis Creek Shale]]'''
==Herrin Coal, Energy Shale, and Walshville Channel==
| '''[[Galatia Channel:Herrin Coal, Energy Shale, and Walshville Channel|Herrin Coal, Energy Shale, and Walshville Channel]]'''
[[Galatia Channel:Herrin Coal, Energy Shale, and Walshville Channel|Herrin Coal, Energy Shale, and Walshville Channel]]
| '''[[Galatia Channel:Baker Coal and Winslow-Henderson Channel|Baker Coal and Winslow-Henderson Channel]]'''
==Baker Coal and Winslow-Henderson Channel==
The Baker Coal constitutes an important economic seam in the southeastern part of the Illinois Basin. The following is a summary of information we have assembled from mine and borehole data. A longer report on the Baker Coal is in preparation.
| '''[[Galatia Channel:Danville Coal|Danville Coal]]'''
Glenn (1912) named the Baker Coal for the Baker Mine in Webster County, Kentucky. Kosanke et al. (1960) gave the name Allenby Coal Member to a thin seam in southeastern Illinois. In southern Indiana, geologists used the informal name Lower Millersburg coal. Our subsurface cross sections (unpublished) demonstrate that the Baker, Allenby, and Lower Millersburg coals are the same bed. Because Baker was the first name to be used formally, we are using Baker Coal in this report.
| '''[[Galatia Channel:Murphysboro Coal and Oraville Channel|Murphysboro Coal and Oraville Channel]]'''
Thick Baker Coal is largely restricted to narrow belts along a paleochannel that was partly contemporaneous with peat formation ([[:File:C605-Figure-44.jpg|Figure 44]]). Friedman (1960) mapped this paleochannel in Pike County, Indiana, and named it the Winslow channel. Eggert (1985, 1994) extended the Winslow channel farther south in the subsurface. Beard and Williamson (1979) mapped a paleochannel in Henderson and Webster Counties, Kentucky, and called it the Henderson channel. Because the Winslow and Henderson channels align directly at the state border, we recognize them as the same feature and use the compound name Winslow–Henderson channel.
<li style="display: inline-block;">[[File:C605-Figure-44.jpg|500px|{{File:C605-Figure-44.jpg}}|thumb]]</li>
<li style="display: inline-block;">[[File:C605-Figure-45.jpg|500px|{{File:C605-Figure-45.jpg}}|thumb]]</li>
Like the Galatia channel, the Winslow–Henderson comprises a broad, deeply incised valley that was filled largely with sand prior to peat development and a younger, narrower segment that was filled with finer grained sediments during the time of Baker peat formation ([[:File:C605-Figure-45.jpg|Figure 45]]). Borehole data and exposures in surface mines show that the channel cut downward from above the Bankston Fork (upper Providence) Limestone, a short distance beneath the Baker Coal. The channel carved a valley 1.9 to 8.1 mi (3 to 13 km) wide and as deep as 196.9 ft (60 m), removing units as old as the Springfield Coal. Sandstone of the lower valley-fill displays large-scale lateral accretion on mine highwalls, signifying a meandering system. Sandstone grades upward to finer grained, heterolithic strata that bear tidal rhythmites. Approaching the Winslow–Henderson channel, the Baker Coal thickens to 9.8 ft (3 m) or more, and it has multiple laminae and thin interbeds of carbonaceous claystone. The Baker is absent or reduced to stringers within a meandering belt that varies from about 0.9 to 3.1 mi (1.5 to 5 km) wide.
The principal difference between the Springfield and the Baker is that the latter lacks marine roof strata and has no gray shale wedge analogous to the Dykersburg. Covering the Baker is a succession of fluvial and floodplain deposits, including mudstone, thin lenticular sandstone, thin coal, and paleosols. Lenses of gray shale a few feet (meters) thick bear fossil plants, including upright tree stumps. Brackish to marine strata did not appear until after the next younger major peat deposit, the Danville Coal. These observations suggest that (1) preserved Baker Coal developed farther up the coastal plain than did preserved Springfield Coal, or (2) the sea level did not rise much following Baker peat accumulation.
==Danville Coal==
The Danville (Figures [[:File:C605-Figure-02.jpg|2]] and [[:File:C605-Figure-40.jpg|40]]) is the next major coal bed above the Baker. It is the youngest widespread, economically important seam in the Illinois Basin. The Danville is thin and rather patchy in western Illinois, reaching 3.3 ft (1 m) thick in small areas. Coal thick enough to mine (generally 3.9 to 5.9 ft [1.2 to 1.8 m] thick) is largely confined to a belt running north-northwest along the east side of the basin from Gibson County, Indiana, into northern Illinois. Coal-thickness patterns (Korose et al. 2002) indicate that much of the thickest coal has been eroded east of the present outcrop. Most Danville Coal has a high sulfur content, but low-sulfur (locally <0.5%) coal occurs in Knox and Sullivan Counties, Indiana, and in the bordering part of eastern Illinois (Harper and Eggert 1995; Harper 1998; Korose et al. 2002).
<li style="display: inline-block;">[[File:C605-Figure-02.jpg|500px|{{File:C605-Figure-02.jpg}}|thumb]]</li>
<li style="display: inline-block;">[[File:C605-Figure-40.jpg|500px|{{File:C605-Figure-40.jpg}}|thumb]]</li>
Overlying the Danville is a complex succession of gray clastic rocks that thickens from less than 3.3 ft (1 m) in parts of western Illinois to as much as 229.7 ft (70 m) in the central Fairfield Basin of southeastern Illinois. Where it is thin, the shale is dark colored and, in places, is black, fissile shale similar to the Excello and Turner Mine Shales. Eastward, the interval changes to gray mudstone, siltstone, and sandstone arranged in multiple upward-coarsening cycles. The coarsest facies occur in Knox County, Indiana, coinciding with the only known area of low-sulfur Danville Coal.  Abundant fossil plants, tree stumps in growth position, and tidal rhythmites are much in evidence in underground mines here. Rolls are also common, as are wedge-shaped siltstone splits and a large-scale coal-seam disruption that probably involved peat rafting (Figure 46). However, no channels contemporaneous with the Danville have been encountered.
<li style="display: inline-block;">[[File:C605-Figure-46.jpg|500px|{{File:C605-Figure-46.jpg}}|thumb]]</li>
Evidently, Knox County lay near the mouth of a large estuary that discharged sediment onto the Danville peat from the east. Rapid burial under freshwater to slightly brackish conditions resulted in low-sulfur coal. Tidal currents agitated the peat near the estuary mouth, whereas deeper in the basin, the peat was quietly buried under fine mud.
==Murphysboro Coal and Oraville Channel==
The Murphysboro Coal, in the upper Tradewater Formation, presents some similarities to the Colchester, Springfield, Herrin, and Danville Coals in that thick, low-sulfur coal is associated with a gray shale “wedge” and a contemporaneous channel. However, the Murphysboro is highly lenticular and has been less thoroughly studied than the other examples, so the relationship of coal to gray shale and the channel is not completely understood.
Jacobson (1983) documented that thick, low-sulfur Murphysboro Coal in southwestern Illinois flanks a feature that he named the Oraville channel (Figures [[:File:C605-Figure-39.jpg|39]] and [[:File:C605-Figure-47.jpg|47]]). In fact, coal of mineable thickness (up to 8.2 ft [2.5 m]) is confined to a small area near the channel. Sulfur content is low to moderate (1 to 2.5%) near the channel where thick, nonmarine gray mudstone (unnamed) overlies the coal. Elsewhere, the coal is topped by marine black shale and limestone, and its sulfur content is greater than 3% (Jacobson 1983). Away from the Oraville channel, the Murphysboro has a highly patchy distribution (Treworgy and Bargh 1984). Only small, isolated areas of thick coal are known. Little significant mining has taken place away from the channel.
<li style="display: inline-block;">[[File:C605-Figure-39.jpg|500px|{{File:C605-Figure-39.jpg}}|thumb]]</li>
<li style="display: inline-block;">[[File:C605-Figure-47.jpg|500px|{{File:C605-Figure-47.jpg}}|thumb]]</li>
<li style="display: inline-block;">[[File:C605-Figure-48.jpg|500px|{{File:C605-Figure-48.jpg}}|thumb]]</li>
The Murphysboro undergoes dramatic splitting near the Oraville channel margins, where underclay is absent or weakly developed ([[:File:C605-Figure-48.jpg|Figure 48]]). Upright lycopsid tree stumps are common above the lower coal bench. The gray mudstone exhibits tidal rhythmites and bears a prolific, well-preserved flora dominated by Macroneuropteris scheuchzeri, a plant believed to have been tolerant of coastal, perhaps brackish-water, conditions (Falcon-Lang 2009). The Oraville channel follows the downthrown side of a monocline that was active during deposition of the Murphysboro Coal (Nelson et al. 2011).
Ostensibly, the Oraville is another fluvial channel that became an estuary, like the Galatia and Walshville channels. However, nothing is known of the presumed fluvial “precursor” channel, and the nature of “splitting” coal is poorly understood. Further study of the Murphysboro is required to integrate this unit into a general model.

{{Galatia Channel Page}}
{{Galatia Channel Page}}
{{#set: Has parent page=Galatia_Channel:Evolution_of_a_Peat_-_Contemporaneous_Channel_-_The_Galatia_Channel,_Middle_Pennsylvanian,_of_the_Illinois_Basin}}
{{#set: Has parent page=Galatia_Channel:Evolution_of_a_Peat_-_Contemporaneous_Channel_-_The_Galatia_Channel,_Middle_Pennsylvanian,_of_the_Illinois_Basin}}
{{#set:Prev_Page=Galatia Channel:Other Channels Related to the Galatia Channel}}
{{#set:Prev_Page=Galatia Channel:Other Channels}}
{{#set:Next_Page=Galatia Channel:Discussion}}
{{#set:Next_Page=Galatia Channel:Colchester Coal and Francis Creek Shale}}

Latest revision as of 15:15, 14 July 2020

Similar Channels Affecting Other Coal Seams

Several well-documented paleochannels in the Illinois Basin existed contemporaneously with peat deposits older and younger than the Springfield (Figure 39). The Galatia channel provides an apt model for comparison.

  • Figure 39 Map of the Illinois Basin showing channels and gray shale wedges affecting the Murphysboro, Colchester, Herrin, Baker, and Danville Coals.
Colchester Coal and Francis Creek Shale
Herrin Coal, Energy Shale, and Walshville Channel
Baker Coal and Winslow-Henderson Channel
Danville Coal
Murphysboro Coal and Oraville Channel

Primary Source

W. John Nelson, Scott D. Elrick, William A. DiMichele, and Philip R. Ames xxxx, Evolution of a Peat-Contemporaneous Channel: The Galatia Channel, Middle Pennsylvanian, of the Illinois Basin FINISH CITATION