Property:Caption

From ILSTRAT
Jump to navigation Jump to search

This is a property of type Text.

Showing 50 pages using this property.
C
Stage 2: Channel incision of delta sediments.  +
Stage 3: The Galatia channel developed a meander belt.  +
Stage 4: The change to a humid climate caused the Springfield peat to begin to form.  +
Stage 5: Springfield peat accumulates across a large area of the basin.  +
Stage 6: A warming climate brought rapid melting of the glaciers and a sea-level rise. The Galatia channel became an estuary, subject to strong tidal currents.  +
Stage 7: Peat swamps drowned as the estuary became an embayment. Dykersburg sediments rapidly buried the peat.  +
Stage 8: As the transgression continued apace, the entire basin area was submerged in deep water, which became stratified and anoxic, and black mud (Turner Mine Shale) was deposited.  +
Stage 9: Normal marine circulation resumed near the apex of an interglacial stage (marine highstand), bringing a brief interlude of carbonate sedimentation (St. David Limestone).  +
Stage 10: Marine regression begins the next cycle.  +
Conceptual model of Pangea during a glacial episode of the Pennsylvanian. From Cecil, C.B., F.T. Dulong, R.R. West, R. Stamm, B. Wardlaw, and N.T. Edgar, 2003b, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America, in C.B. Cecil and N.T. Edgar, eds., Climate controls on stratigraphy: SEPM Special Publication 77, p. 151–180. Copyright © 2003, used with permission of SEPM; permission conveyed through Copyright Clearance Center, Inc. ITCZ, intertropical convergence zone.  +
Conceptual model of Pangea during an interglacial episode of the Pennsylvanian. From Cecil, C.B., F.T. Dulong, R.R. West, R. Stamm, B. Wardlaw, and N.T. Edgar, 2003b, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America, in C.B. Cecil and N.T. Edgar, eds., Climate controls on stratigraphy: SEPM Special Publication 77, p. 151–180. Copyright © 2003, used with permission of SEPM; permission conveyed through Copyright Clearance Center, Inc. ITCZ, intertropical convergence zone.  +
Diagram illustrating the possible relationship of the Effingham and Galatia channels to Midcontinent cyclothems.  +
Cross section of the Galatia channel near Raleigh in Saline County, Illinois  +
Cross section of the Galatia channel near Raleigh in Saline County, Illinois  +
Cross section of the Galatia channel in Wabash County, Illinois  +
Cross section of the Galatia channel in Wabash County, Illinois  +
Cross section of the Effingham channel at Olney in Richland County, Illinois  +
Cross section of the Effingham channel at Olney in Richland County, Illinois  +
Cross section of the Effingham channel near Stewardson in Effingham and Shelby Counties, Illinois  +
Cross section of the Effingham channel near Stewardson in Effingham and Shelby Counties, Illinois  +
Cross section of the Leslie Cemetery channel in Gibson and Warrick Counties, Indiana  +
Cross section of the Leslie Cemetery channel in Gibson and Warrick Counties, Indiana  +
Map of the southeastern part of the Illinois Basin showing the thickness of the Springfield Coal, channels that affect the coal, and major structural features  +
F
Fig_0870_Photos_001. Photo of the sandy facies of the Hagarstown Member of the Pearl Formation. This photo was taken in 2006 at the Keyesport Sand and Gravel Pit in Clinton County, Illinois. More information on the stratigraphy and geologic history is provided in the FOP Guidebook of Grimley and Phillips (2015). The Sangamon Geosol solum (reddish brown) is developed into the upper couple meters of the unit in the photo. High-angle reverse faulting is interpreted to be from ice-block melting. The depositional environment is here interpreted to be an ice-walled channel. Photograph by David Grimley, May 2006.  +
Fig_0870_Photos_002. The Munie Pit in Madison County, Illinois. Pictured are David Grimley (ISGS) left and Gerry Berning (USDA-NRCS, Soil Scientist) on the right, for scale. Sangamon Geosol development is visible in the upper portion of the unit. This area contains fine sand beds, as well as areas with diamicton beds in the upper portion. It was therefore mapped as the mixed facies in some parts of the pit. Photograph by Andrew Philips, 2004.  +
P
Figure 4-1. Chart showing the development of the Pennsylvanian classification in the Illinois Basin. From the Tri-State Committee (2001). Used courtesy of the Tri-State Committee.  +
Figure 4-10. Idealized diagram illustrating the merging of Davis and Dekoven Coals to form the Seelyville Coal, and the splitting of Dekoven Coal into Greenbush and Abingdon Coals. © University of Illinois Board of Trustees.  +
Figure 4-11. Thickness of the Seelyville Coal. Modified from Korose et al. (2002). Selected anticlines have been added. Copyright © 2002 University of Illinois Board of Trustees.  +
Figure 4-12. Correlation of the Seelyville Coal Member and associated strata from Illinois to the Midcontinent Basin. Midcontinent data from Gentile and Thompson (2004), Pope (2012), Heckel (2013), and P.H. Heckel (personal communication, Aug. 1, 2014). Not to scale. © University of Illinois Board of Trustees.  +
Figure 4-13. Graphic log of the upper part of the Kentucky Geological Survey’s Gil-15 core, principal reference section for the Dekoven and Davis Coal Members. Location is in Carter section 5-M-18, Union County, Kentucky. © University of Illinois Board of Trustees.  +
Figure 4-14. Gamma ray/density and neutron log from the Peabody Natural Gas No. 2 Short borehole in sec. 14, T 7 S, R 7 E, Hamilton County, Illinois, illustrating the log response of Davis, Will Scarlet, Dekoven, and associated units. © University of Illinois Board of Trustees.  +
Figure 4-15. Graphic log of the ISGS No. 1 Morris borehole in Williamson County, the type section for the Will Scarlet Shale Member. Location is in sec. 6, T 10 S, R 4 E, Williamson County, Illinois. © University of Illinois Board of Trustees.  +
Figure 4-16. Thickness of the “parting in the Dekoven Coal.” Modified from Jacobson (1993). Copyright ©1993 University of Illinois Board of Trustees.  +
Figure 4-17. Type section of the Abingdon Coal Member on a tributary of Brush Creek, central part of sec. 6, T 9 N, R 2 E, Knox County, Illinois. Based on ISGS unpublished field notes by H.R. Wanless (August 1929). © University of Illinois Board of Trustees.  +
Figure 4-18. Map of the type area of the Colchester Coal, showing locations of the measured sections in Figure 4-19. Base map is a Colchester 7.5-minute topographic sheet, used courtesy of the U.S. Geological Survey.  +
Figure 4-19. Measured sections from the type area of the Colchester Coal in McDonough County, Illinois. See Figure 4-18 for locations. Columns 1 and 5 from ISGS unpublished field notes by Nelson (1983). Column 2 from Wanless (1929). Copyright © 1929 University of Illinois Board of Trustees. Column 3 from ISGS unpublished field notes by D.L. Reinertsen and R.L. Berger (1959). Column 4 from ISGS unpublished field notes by D.L. Reinertsen and R.L. Berger (1959) and Nelson (1983).  +
Figure 4-2. Reference section for the Carbondale Formation in western Illinois. After Kosanke et al. (1960). Current nomenclature is applied. © University of Illinois Board of Trustees.  +
Figure 4-20. Field sketch by W.J. Nelson (1983) illustrating apparent splitting of the Colchester Coal. Underclay and lower splits of coal are at the lower right. Separating the lower and upper coal benches is gray, weakly laminated siltstone that resembles normal Francis Creek Shale. No underclay or rooted zone was observed below the upper coal bench. This feature may have formed when the bulk of the Colchester peat deposit was rafted during early stages of Francis Creek deposition. Sandstone overlying the coal underwent compressional folding and shearing prior to lithification, possibly as a result of sediment compaction. Width of view: ~75 feet (23 m) laterally and 25 feet (7.6 m) vertically. Locality: Stream bank in Argyle Lake State Park, SE1/4 NE1/4 SW1/4, sec. 31, T 6 N, R 3 W, McDonough County. © University of Illinois Board of Trustees.  +
Figure 4-21. Type section of the Francis Creek Shale. Modified from Wanless (1957). Copyright © 1957 University of Illinois Board of Trustees.  +
Figure 4-22. Log of Northern Illinois Gas borehole PON-62 in sec. 2, T 27 N, R 6 E, Livingston County, Illinois. This is a reference section for the Francis Creek Shale Member. © University of Illinois Board of Trustees.  +
Figure 4-23. Isopach map of the Francis Creek Shale. From Korose et al. (2003), modified from Smith et. al (1970). Copyright © 1970, 2003 University of Illinois Board of Trustees.  +
Figure 4-24. Pods of Francis Creek Shale above depressions in the Colchester Coal as exposed on the highwall at United Electric Coal Companies Banner Mine, SE1/4, NW1/4, sec. 12, T 6 N, R 5 E, Fulton County, Illinois. From Smith et al. (1970). Copyright © 1970 University of Illinois Board of Trustees.  +
Figure 4-25. Wolf Bridge section in sec. 13, T 10 N, R 3 E, Knox County, Illinois, the reference section for the Oak Grove Member. From Smith et al. (1970). Copyright © 1970 University of Illinois Board of Trustees.  +
Figure 4-26. Diagram showing how Wright (1965) interpreted regional relationships of the Oak Grove Member and adjacent units. Copyright © 1965 Cynthia R. Wright. Used with permission.  +
Figure 4-27. Diagram from Wanless (1964), illustrating his hypothesis that the Wheeler and Bevier Coal Beds wedge out into the Oak Grove succession of marine shale and limestone. Used with permission of the Kansas Geological Survey.  +
Figure 4-28. Graphic log from the Audubon Oil & Gas No. A-1 Green borehole in sec. 30, T 2 S, R 10 E, Edwards County, Illinois, reference section for the Purington Shale. © University of Illinois Board of Trustees.  +
Figure 4-29. Graphic log from the ISGS No. 1 Eric Miller borehole in sec. 2, T 8 N, R 6 E, Peoria County, Illinois, the reference section for the Purington Shale. Coal and limestone units below the Colchester Coal have not been identified. © University of Illinois Board of Trustees.  +
Figure 4-3. Log of DTE Methane No. 11-1 Lexington borehole in sec. 11, T 6 S, R 2 E, Franklin County, Illinois. This is the reference log for the Carbondale Formation. Lithologic patterns in the center column denote cored intervals. © University of Illinois Board of Trustees.  +
Figure 4-30. Type section of the Survant Coal Member, as described by Wier (1961). Data used under Creative Commons license CC BY-NC-SA 3.0.  +
Figure 4-31. Graphic log of the Audubon Oil & Gas No. 1 Fritschle borehole in sec. 20, T 6 N, R 9 E, Jasper County, Illinois, the reference section for the Wheeler and Bevier Coals in Illinois. © University of Illinois Board of Trustees.  +