Property:Caption

From ILSTRAT
Jump to navigation Jump to search

This is a property of type Text.

Showing 50 pages using this property.
C
Photographs showing the Springfield Coal “split” by massive siltstone in the Millennium Mine. The lower view is a close-up of the upper view. Notice the ragged splaying of coal layers into the siltstone from both above and below, with one coal stringer crossing diagonally from the lower to the upper coal “bench.” Combined with the absence of roots beneath the upper bench, such geometry implies that the upper part of the peat deposit was rafted. Enlarged view at right. Brown and yellow stains resulted from iron-rich water seeping through the coal.  +
Photographs of siltstone “splits” in the Springfield Coal. (a) Upper “bench” of coal splitting into multiple layers, with ragged splaying of lower coal layers at the Millennium Mine. (b) Contact between the upper coal bench and a massive siltstone split in American Coal’s Millennium Mine, approximately 0.6 mi (1 km) west of the main Galatia channel. Notice the complete absence of root traces in the siltstone.  +
Profile view of the disturbance in Figure 21a in the Millennium Mine, Saline County, Illinois.  +
Profile view of the disturbance Figure 21b in the Millennium Mine. The map shows the relationship to the Galatia channel.  +
Map and cross section of the disturbance in the Sahara No. 20 Mine, Saline County, Illinois.  +
Map and cross section of the disturbance in the Dering Coal Company No. 2 Mine, Saline County, Illinois. Redrafted from field sketches by Rolf Roley and G.H. Cady in the ISGS archives.  +
Drawings from Meier and Harper (1981)'"`UNIQ--ref-00000001-QINU`"' illustrating a major disruption of the Springfield Coal in AMAX Coal’s Wabash Mine in Wabash County, Illinois.  +
(Top) Image of the major disturbance in the Wabash Mine. From Meier and Harper (1981). (Bottom) The same drawing with interpretation added, depicting the peat deposit torn asunder, with the upper part floated away from the lower. The seam height at the left side of the diagram is approximately 9 ft (2.7 m).  +
Photograph of interlaminated carbonaceous shale and bright to dull coal close to the margin of the Sullivan channel in the Oaktown Mine in Knox County, Indiana.  +
Photograph of interlaminated carbonaceous shale and bright to dull coal close to the margin of the Sullivan channel in the Oaktown Mine in Knox County, Indiana.  +
Map from Potter (1962)'"`UNIQ--ref-00000001-QINU`"' showing the Effingham channel as described in this report.  +
Gamma-ray–neutron log from the Berry Petroleum No. 11-14 Pitcher well in Jasper County, Illinois, indicating coal in the upper part of the Effingham channel fill.  +
Graphic log of core from Richland County, Illinois, showing filling of the Effingham channel. The core shows two upward-fining sequences, the lower having tidal rhythmites in the upper part. The borehole is ISGS No. 1 Elysium (Hazel Farm) in sec. 27, T4N, R9E (county no. 25922).  +
Interpretive cross section of the Effingham channel in Richland County, Illinois, showing two stages of infilling, with local coal at the top of the lower stage.  +
Maps of the Leslie Cemetery channel. (a) Regional map showing the relationship to other channels. (b) Map of the northern part of the Leslie Cemetery channel, with the thickness of the Folsomville Member. From Eggert (1984), The Leslie Cemetery and Francisco distributary fluvial channels in the Petersburg Formation (Pennsylvanian) of Gibson County, Indiana, U.S.A., in R.A. Rahmani and R.M. Flores, eds., Sedimentology of coal and coal-bearing sequences: International Association of Sedimentologists, Special Publication 7 p. 311, 313. Copyright © 1984 The International Association of Sedimentologists.  +
Map of the Leslie Cemetery channel prepared for this study, using information from boreholes and mines. Lines of section for Figure 36 and Plate 6 are shown.  +
Generalized sketches illustrating opposite margins of the Leslie Cemetery channel, as exposed in surface mines in the eastern half of 9S, 4W, Warrick County, Indiana. The upper image is from Peabody’s Lynnville Mine in July 1983, representing the northern half of the channel. The lower image is from Peabody’s Eby Pit in June 1982, representing the southern half of the channel.  +
Interpretive diagram showing sequential development of the Leslie Cemetery channel. (a) The Francisco channel is eroded and filled with sediment, largely sand. (b) Springfield peat accumulates in swale left by the abandoned channel. (c) Flowing water reoccupies the channel during the later stages of peat accumulation. Peat encroaches from the margins as the channel migrates laterally. (d) A marine incursion drowns the region and deposits black shale and limestone. Channel filling inverts the topography because of differential compaction.  +
Map and cross section of the Terre Haute channel. From Friedman (1960)'"`UNIQ--ref-00000001-QINU`"'. Courtesy of the Indiana Geological and Water Survey. Lines of cross section are shown on the map.  +
Map of the Illinois Basin showing channels and gray shale wedges affecting the Murphysboro, Colchester, Herrin, Baker, and Danville Coals.  +
Stratigraphic column showing the units mentioned in the section on channels affecting coal seams other than the Springfield.  +
Isopach map of the Francis Creek Shale.  +
Interpretive cross section of the Herrin Coal, Walshville channel, and Energy Shale.  +
Map showing the Walshville channel and sulfur content of the Herrin Coal. After Treworgy et al. (2000)'"`UNIQ--ref-00000001-QINU`"'. The four named areas of low-sulfur coal are all associated with thick Energy Shale adjacent to the channel.  +
Map showing the Winslow–Henderson channel.  +
Interpretive cross section of the Winslow-Henderson channel. BR, Brereton Limestone; HR, Herrin Coal; BH/BT, Briar Hill/Bucktown Coal; SD/AC, St. David/Alum Cave Limestone; TM, Turner Mine Shale.  +
Disruption of the Danville Coal, with the seam “split” by a thick wedge of mudstone. Note the ragged splaying of coal into mudstone, with a thin coal stringer crossing diagonally from the lower to upper “bench.” The site is the box cut at a portal of the Prosperity Mine in Gibson County, Indiana.  +
Map showing the thickness of the Murphysboro Coal near the Oraville channel in Jackson and Perry Counties, southwestern Illinois. From Jacobson (1983)'"`UNIQ--ref-00000001-QINU`"'  +
Interpretive cross section of the Oraville channel.  +
Stage 1: Deposition of the Delafield Member as a series of coalescing deltas during the onset of a glacial stage as the sea level began to fall. The product is a thick succession of clastic rocks that coarsen upward.  +
Stage 2: Channel incision of delta sediments.  +
Stage 3: The Galatia channel developed a meander belt.  +
Stage 4: The change to a humid climate caused the Springfield peat to begin to form.  +
Stage 5: Springfield peat accumulates across a large area of the basin.  +
Stage 6: A warming climate brought rapid melting of the glaciers and a sea-level rise. The Galatia channel became an estuary, subject to strong tidal currents.  +
Stage 7: Peat swamps drowned as the estuary became an embayment. Dykersburg sediments rapidly buried the peat.  +
Stage 8: As the transgression continued apace, the entire basin area was submerged in deep water, which became stratified and anoxic, and black mud (Turner Mine Shale) was deposited.  +
Stage 9: Normal marine circulation resumed near the apex of an interglacial stage (marine highstand), bringing a brief interlude of carbonate sedimentation (St. David Limestone).  +
Stage 10: Marine regression begins the next cycle.  +
Conceptual model of Pangea during a glacial episode of the Pennsylvanian. From Cecil, C.B., F.T. Dulong, R.R. West, R. Stamm, B. Wardlaw, and N.T. Edgar, 2003b, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America, in C.B. Cecil and N.T. Edgar, eds., Climate controls on stratigraphy: SEPM Special Publication 77, p. 151–180. Copyright © 2003, used with permission of SEPM; permission conveyed through Copyright Clearance Center, Inc. ITCZ, intertropical convergence zone.  +
Conceptual model of Pangea during an interglacial episode of the Pennsylvanian. From Cecil, C.B., F.T. Dulong, R.R. West, R. Stamm, B. Wardlaw, and N.T. Edgar, 2003b, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America, in C.B. Cecil and N.T. Edgar, eds., Climate controls on stratigraphy: SEPM Special Publication 77, p. 151–180. Copyright © 2003, used with permission of SEPM; permission conveyed through Copyright Clearance Center, Inc. ITCZ, intertropical convergence zone.  +
Diagram illustrating the possible relationship of the Effingham and Galatia channels to Midcontinent cyclothems.  +
Cross section of the Galatia channel near Raleigh in Saline County, Illinois  +
Cross section of the Galatia channel near Raleigh in Saline County, Illinois  +
Cross section of the Galatia channel in Wabash County, Illinois  +
Cross section of the Galatia channel in Wabash County, Illinois  +
Cross section of the Effingham channel at Olney in Richland County, Illinois  +
Cross section of the Effingham channel at Olney in Richland County, Illinois  +
Cross section of the Effingham channel near Stewardson in Effingham and Shelby Counties, Illinois  +
Cross section of the Effingham channel near Stewardson in Effingham and Shelby Counties, Illinois  +